
Electronic Notes in Theoretical Computer Science 83 (2005)
URL: http://www.elsevier.nl/locate/entcs/volume83.html 21 pages

Ribbon Proofs

Jules Bean
1,2

Department of Computer Science

Queen Mary, University of London

London, United Kingdom

Abstract

We present ‘Ribbon Proofs’, a graphical proof system for the Logic of Bunched
Implications (BI). We give the informal, graphical, notation, we formalise the system
algebraically and sketch the proof of its soundness and completeness. We discuss the
spatial and geometrical nature of the proof system and its relation to BI’s spatial
model theory.

1 Introduction

The purpose of this paper is to introduce a novel proof system for the Logic
of Bunched Implications (BI) [4]. In contrast to the proof theory given in [4]
this system will actually tie in with the strong spatial intuitions which are
suggested by BI’s model theory.

The proof system is an extension of Fitch’s box proofs, and it inherits the
advantages and disadvantages of that system. Viewed in contrast to natural
deduction (of which it should be seen as a variant), the linear box proof system
contains two main features. Firstly, it totally internalises the structural rules,
allowing a hypothesis to be used multiple times or not at all. Secondly, it
isolates discharged hypotheses using non-overlapping boxes, which indicate
the scope within which a hypothesis may be used. This is strictly analogous
to scope of identifiers in computer programming languages.

The negative consequence of this economy of notation is that formulating
a notion of a normal proof is more complex and less natural. One approach to
normalization is to consider a translation between the system and either NJ or
LJ. Such translations force some equalities between apparently very different
proofs; most notably, a box proof can contain a totally unused subproof, these
are ignored by the equivalence induced by such a translation.

1 This work was supported by the author’s EPSRC studentship
2 Email: jules@dcs.qmul.ac.uk

c©2005 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume83.html

Bean

Substitution, on the other hand, sits very nicely in the box proof system:
to replace a hypothesis P by a proof of P , you can simply insert all the lines
of the proof immediately above the formula P .

We give all the rules of box proofs, showing the notation we will use in
this paper, in Fig. 1.

In the next section, we will give an introduction to BI, both its semantics,
emphasising how they can be interpreted spatially, and its conventional proof
theory. We will state the most important proof-theoretic theorems from [4,2],
showing that the logic is in traditional senses a good one. Then we will go
onto the main work, of the paper, describing our system of ‘Ribbon Proofs’,
including a formal mathematized definition, a (sketch) proof of relative sound-
ness and completeness, and a term model arising from the proof system. We
will conclude by mentioning our ongoing work and possible applications of the
system.

2 The Logic of Bunched Implications

2.1 Semantics

Recall that intuitionistic logic has a model using the notion of a universe of
‘possible worlds’, where at each world a particular set of atomic propositions
is said to hold. These worlds are sometimes described as being possible future
states of a system, or possible states of knowledge of an ideal observer. The
connectives ∧ and ∨ are interpreted pointwise at each world in the natural
way, and the → connective relies on a partial ordering of the worlds. We
write w |= P iff a formula P holds at a world w, we decide which atomic
formulae hold at each world, build up a complete forcing relation by structural
induction, using the following formal rules:

• w |= ⊤ always

• w |= ⊥ never

• w |= P ∧ Q iff w |= P and w |= Q

• w |= P ∨ Q iff w |= P or w |= Q

• w |= P → Q iff, for each v ⊑ w, if v |= P then v |= Q

We extend these ideas in the following way. We consider universes where
we have a notion of combining, or joining together, worlds. As a running
example, we will take the logic [3] of O’Hearn, Ishtiaq, Reynolds, Calcagno,
and Yang. Worlds are sets (‘heaps’) of cells in memory, where a cell is thought
of as being a value at a location. The notion of combination is the disjoint
union of sets, only to be defined when the sets of locations are disjoint. As
a sample proposition, we will consider a →֒ 3, which indicates that the cell a
exists in the heap and has value 3.

So we add to our possible worlds structure a combining operator, ‘·’, which
makes them into a partial monoid. Partial, because the notion of combination

2

Bean

1. A ∧ B premise

2. A ∧-elim

or

1. A ∧ B premise

2. B ∧-elim

1. A premise

2. B premise

3. A ∧ B ∧-intro

∧-elim ∧-intro

1. A → B premise

2. A premise

3. B →-elim

1. A assumption
...

n. B

n + 1. A → B →-intro

→-elim →-intro

1. A premise

2. A ∨ B ∨-intro

or

1. B premise

2. A ∨ B ∨-intro

1. A ∨ B premise

2. A assumption
...

n. C

n + 1. B assumption
...

m. C

m + 1. C ∨-elim

∨-intro ∨-elim

1. A premise

2. ¬A premise

3. ⊥ ¬-elim

1. A assumption
...

n. ⊥

n + 1. ¬A ¬-intro

¬-elim ¬-intro

1. ⊥ premise

2. A ⊥-elim

⊥-elim

Fig. 1. Box Proofs for Natural Deduction

3

Bean

need not always make sense: w ·v will not be defined if w and v are overlapping
heaps. For the purposes of this paper, we will assume that the operation
is commutative, although there are no theoretical problems with the non-
commutative version and it undoubtedly has some interesting applications.
The identity of the partial monoid will be denoted e.

Definition 2.1 A commutative partial monoid is a set equipped with a partial
binary operation ‘·’, satisfying the equations (a · b) · c = a · (b · c), a · b = b · a,
and a · e = e in the sense that whenever the left hand side is defined, the right
hand side must be defined, and they are equal, and vice versa.

Corresponding to our new operator on worlds, we can introduce two new
logical connectives. Firstly, we add ‘∗’, which is a spatial ‘and’. In our example
P ∗ Q would mean that the heap being described can be split into two parts
such that one satisfies P and the other Q. a →֒ 3∗ b →֒ 4 means that the heap
splits into two parts, one containing cell a with value 3, and one containing
cell b with value 4; this is a different statement from a →֒ 3 ∧ b →֒ 4 because
in the former, a and b are guaranteed to be different locations, in the latter
they may (or may not) coincide.

Corresponding to that, we add the spatial implication −∗. P −∗ Q means
that, given any heap satisfying P disjoint from the current heap, the combi-
nation of that one and the current forms a larger heap satisfying Q. a →֒ 3 −∗
(a →֒ 3 ∗ b →֒ 4) means that if we add to the current heap a (disjoint) heap
in which the cell a has value 3, then in the new (combined) heap, cell a will
have the value 3 and cell b the value 4.

Formally:

• w |= P ∗ Q iff, for some u and v such that u · v ⊑ w, u |= P and v |= Q

• w |= P −∗ Q iff, for every u such that u |= P and u ·w is defined, u ·w |= Q

In practice, many of the intuitive models are simplified by considering the
Boolean variant of BI, where the accessibility relation ‘⊑’ is simply the identity
relation.

The power of pointer logic comes in its application to produce a Hoare-
style logic of computer programs. In [3] a system is described which considers
{P}program{Q} assertions about computer programs, where P and Q are the
pre- and post-conditions written in Pointer Logic.

2.2 Proof Theory

In [4], Pym presents two calculi for BI. He deals with predicate BI, but we
shall restrict our interest to the propositional fragment. The two calculi are
equivalent, and both are couched in terms of judgements about sequents, but
one (LBI) is an analogue of sequent calculus with rules for introducing each
connective on the left and the right, while the other (NBI) has ‘natural deduc-
tion style’ introduction and elimination rules, both acting on connectives on
the right. Pym does not give a natural deduction calculus with judgements on

4

Bean

simple formulae. In a sense Ribbon Proofs come as close as currently seems
possible to such a calculus.

Both LBI and NBI have sequents of a more general form than LJ. In
LJ, (and NJ, and other similar calculi) the sequent is of the form Γ ⊢ P
where Γ is typically a sequence, in some formulations a set, of formulae. This
notion, however, is not sufficient for BI. In BI we work with Γ as a bunch of
formulae, such as (P, Q); ((R; P), S). Intuitively, the commas used to separate
the sequence of formulae in an LJ-sequent are ∧-like in their semantics; since
BI has two conjunctions on an equal footing, we use a generalisation of a
sequence with two punctuation marks, ‘;’ corresponding to ∧ and ‘,’ to ∗.

Definition 2.2 A bunch is defined recursively as

formula|∅m|∅a|(bunch, bunch)|(bunch; bunch)

where formula is any BI proposition. We define an equivalence relation ≡
on bunches to the effect that ‘,’ and ‘;’ are both associative and commutative
(note that they do not distribute over each other), ∅a is the unit of ‘;’, and ∅m

of ‘,’.

We will concentrate here on LBI, makes some of our proofs shorter. The
system is shown in Fig. 2. Note how the rules for ∗ and ∧ (also −∗ and →)
are identical in form. The only difference between ∗ and ∧ is the presence
of the weakening and contraction rules for ;. Using the structurals you can
reclaim the more familiar form of the ∧ rules. Note that the structural rule of
exchange is incorporated into the more general notion of ≡ between bunches.

There are several semantics for BI presented in [4] for which LBI is sound.
The simplest semantics for which LBI is complete is the partial monoid se-
mantics we describe above, as proved in [2]:

Theorem 2.3 (Soundness and Completeness) Any theorem Γ ⊢ P of
LBI holds if and only if the corresponding semantic entailment Γ |= P holds
in the partial monoid semantics.

We note a few other important proof theoretic facts from [4] and [2]:

Theorem 2.4 (Cut-Elimination) To any proof in LBI using Cut, there
corresponds a proof of the same sequent without Cut.

Theorem 2.5 (Decidability) There is a finite decision process for (propo-
sitional) LBI sequents, yielding either a proof or a counterexample.

Theorem 2.6 (Finite model property) For any LBI non-theorem, there
exists not only a countermodel in the partial monoid semantics, but a finite
one.

5

Bean

Axiom
P ⊢ P

Γ ⊢ P ∆(P)
Cut

∆(Γ) ⊢ P

Γ(∆) ⊢ P
W

Γ(∆; Ξ) ⊢ P

Γ(∆; ∆) ⊢ P
C

Γ(∆) ⊢ P

Γ ⊢ P
∆ ≡ Γ

∆ ⊢ P

Γ(∅m) ⊢ P
IL

Γ(I) ⊢ P
IR

∅m ⊢ I

Γ(∅a) ⊢ P
⊤L

Γ(⊤) ⊢ P
⊤R

∅a ⊢ ⊤

⊥L
⊥ ⊢ P

Γ ⊢ P ∆(Ξ, Q) ⊢ R
−∗ L

∆(Ξ, Γ, P −∗ Q) ⊢ R

Γ, P ⊢ Q
−∗ R

Γ ⊢ P −∗ Q

Γ(P, Q) ⊢ R
∗L

Γ(P ∗ Q) ⊢ R

Γ ⊢ P ∆ ⊢ Q
∗R

Γ, ∆ ⊢ P ∗ Q

Γ ⊢ P ∆(Ξ; Q) ⊢ R
→ L

∆(Ξ; Γ; P → Q) ⊢ R

Γ; P ⊢ Q
→ R

Γ ⊢ P → Q

Γ(P ; Q) ⊢ R
∧L

Γ(P ∧ Q) ⊢ R

Γ ⊢ P ∆ ⊢ Q
∧R

Γ; ∆ ⊢ P ∧ Q

Γ(P) ⊢ R ∆(Q) ⊢ R
∨L

Γ(P ∨ Q); ∆(P ∨ Q) ⊢ R

Γ ⊢ Pi
∨R (i = 1 or 2)

Γ ⊢ P1 ∨ P2

Fig. 2. LBI

3 Ribbon Proofs

3.1 Introduction

(A ∧ B) ∗ C ⊢ (A ∗ C) ∧ (B ∗ C)

The theorem above can take the credit for motivating the system of Ribbon
Proofs. It is a natural theorem to think about when exploring the logic;
although ∧ and ∗ do not distribute over each other, they do distribute ‘one-
way’.

It is easy to see the semantic proof of the theorem, in terms of the model
theory given above. If a world w forces the formula (A∧B)∗C, then there are

6

Bean

worlds u, v s.t. u · v ⊑ w, u |= A ∧ B and v |= C. But then of course u |= A,
and so w |= A ∗ C; similarly w |= B ∗ C. The LBI and NBI proofs of this
theorem, whilst straightforward, do not reflect this simple semantic reasoning.
The idea of the ribbon proof is to make the formal proof which reflects the
spatial intuition of the semantic proof. The ribbon proof is shown in Fig. 3.

1. (A ∧ B) ∗ C hypothesis

2. A ∧ B C ∗-elim 1

3. A ∧-elim2

4. B ∧-elim2

5. A ∗ C ∗-intro 3,2

6. B ∗ C ∗-intro 4,2

7. (A ∗ C) ∧ (B ∗ C) ∧-intro 4,2

Fig. 3. A ribbon proof

The heavily lined boxes, which we call ribbons, correspond to worlds of
the semantics. The first line is a formula in a single ribbon, and the second
line contains two ribbons – we will say that the ribbon has divided into two.
Then in the fifth line, the two ribbons combine again, which takes the proof
back to the original ribbon; we will say that A ∗ C holds in the same ribbon
as (A ∧ B) ∗ C.

This is the key to the intuitive reading of ribbon proofs. In a box proof,
the informal reading of a formula is ‘this formula holds, given the hypotheses’,
and for formulae inside boxes ‘hypotheses’ must be considered to include the
temporary assumptions of the box. This loosely corresponds to a truth-value
reading of classical or intuitionistic logic. Any similar truth-theoretical reading
of BI needs to consider not only whether a formula holds, but where it holds,
and this is provided by the ribbons.

Ribbon proofs form an extension of box proofs, so all the box proof rules
are used in the familiar way. Premises and conclusion for the box proof rules
must all be selected from the same ribbon. When boxes are used, they stretch
the entire width of the proof 3 , and are drawn as a lighter line to distinguish
them from ribbons.

The ∗-elim rule, as illustrated in Fig. 3, allows the splitting of the current
ribbon into two: if P ∗ Q holds, then somewhere P holds, and somewhere
Q holds. The ∗-intro rule, conversely, joins two ribbons together to make a
conclusion of the form P ∗ Q.

The −∗-elim rule has the same shape as ∗-intro. The −∗-intro, just like
→-intro, is a subproof under an assumption. The −∗ asssumption, however,

3 This is not an essential feature of the system, but a design decision which we will stick

to in this paper, as the formalism we present incorporates it

7

Bean

is in a separate ribbon – a ribbon which is in itself only hypothetical. To
illustrate these rules, in Fig. 4 is a proof of one direction of the currying law
for ∗ and −∗. This proof also illustrates the pseudo-rule twist which allows the
ribbons to behave commutatively.

1. (A ∗ B) −∗ C hypothesis

2. B assumption

3. A assumption

4. A B twist

5. A ∗ B ∗-intro

6. C −∗-elim

7. A −∗ C −∗-intro

8. B −∗ (A −∗ C) −∗-intro

Fig. 4. A proof using −∗ and twist

Finally, we have rules for the unit I. I-elim is the same shape as ∗-intro,
and deals with the case that one ribbon turns out to be ‘empty’. I-intro allows
a split like ∗-elim, but one of the ribbons it creates is ‘empty’. These rules are
illustrated in Fig. 5.

1. I ∗ (A −∗ B) hypothesis

2. I (A −∗ B) ∗-elim

3. (A −∗ B) I-elim

4. A assumption

5. B −∗-elim

6. B I I-intro

7. B ∗ I ∗-intro

8. A −∗ (B ∗ I) −∗-intro

Fig. 5. A proof using I

3.2 Formal Definitons

We are aiming at a formal definition of a ribbon proof. At the heart of a ribbon
proof is a particular kind of partial commutative monoid, and we firstly define
that.

8

Bean

Definition 3.1 A ribbon monoid is a partial commutative monoid M , written
additively, equipped with a ‘greatest element’ 1 satisfying the following:

• (∀r 6= e)r + r ↑

• (∀r∃s)r + s = 1

We define on M a relation ≤ by

r ≤ s ⇐⇒ (∃t)r + t = s

In fact, a great deal more than this can be shown about the particular
ribbon monoids we are interested in, and we could make a stronger definition;
for example, ≤ will turn out to be a partial order. However, that has no
theoretical consequences in this paper, so we omit the proof and work with
the above weaker notion of ribbon monoid.

Example 3.2 Take X an arbitrary set, M some subset of P (X) containing
{}, A+B to be A∪B if A∩B = {}, undefined otherwise, and close M under
+ and complement relative to X. This is a ribbon monoid, e is {}, 1 is X, ≤
is ⊆.

We define ribbon proofs formally in terms of a slightly more general notion,
that of a proper ribbon structure — informally, an unfinished proof.

Definition 3.3 We define the following:

• A ribbon structure is a distinguished box ;

• A box is a ribbon monoid, and a sequence of lines and boxes;

• A line is a set of triples 〈r, f, j〉 where
· r is a ribbon,
· f is a either a formula of (propositional) BI or the special non-formula

nothing ,
· j is a justification;

• A ribbon is an element of the monoid;

• A justification is the name of a ribbon proof rule, or one of the special
justifications hypothesis, assumption, or nothing ;

This notion corresponds with our informal depiction of ribbon proofs. A
line is just a line on a page containing some formulae. The triples are separated
from each other by the thick lines which represent ribbons. We draw the f
component of the triples in the ribbons, and we display the j component to
the right of the proof; which works because the particular ribbon structures
we need contain at most one non-nothing justification per line.

The most significant contribution of the notation is the way it indicates
how one line relates to the next: the thick lines connect triples with the same
ribbon component r; the r-component of the triples, and the structure of the
ribbon monoid as a whole, is implicit in the way we join ribbons from one
line to the next. The pseudo-rule twist makes this possible in more generality.

9

Bean

When we draw two (or more) ribbons s and t, say, in one line spanning exactly
the same horizontal space as one ribbon r in the next, we are denoting the
monoid identity r = s + t.

As an example, take the ribbon proof in Fig. 4. The outermost box (the
proof itself) has the two-element monoid {e, a} (i.e. P ({0})). The first line
contains the triple 〈a, (A ∗ B) −∗ C, hypothesis〉. Then there is a box, which
has the four element monoid {e, a, b, a+b}, and first line 〈a, nothing , nothing〉;
〈b, B, assumption〉. Next there is a further box, with larger monoid {e, a, b, a+
b, c, a+c, b+c, a+b+c} and first line 〈a, nothing , nothing〉; 〈b, nothing , nothing〉;
〈c, A, assumption〉. The twist gives rise to the same line again (as our for-
malism works with sets of triples, not sequences). The next line of this in-
nermost box is 〈a, nothing , nothing〉; 〈b + c, A ∗ B, ∗-intro〉, and the final line
〈a + b + c, C,−∗-elim〉. Returning to the intermediate box we have the line
〈a + b, A −∗ C,−∗-intro〉, and then finallly in the outermost box again the line
〈a, B −∗ (A −∗ C),−∗-intro〉.

We are not interested in all ribbon structures, but rather ones obeying
certain well-formedness conditions. We start with the notion of a ribbon
structure corresponding to a bunch:

Definition 3.4 The ribbon structure corresponding to a bunch Γ, written
RSΓ is defined as follows by induction over the structure of bunches. We will
write the monoid of RSΓ as MΓ, and the identity and greatest elements in that
monoid as eΓ and 1Γ.

• The ribbon structure RSP corresponding to a formula P has a single line,
with a single triple 〈1, P, hypothesis〉, and MP is the two-element monoid
{e, 1} with 1 + 1 ↑.

• RS∅a
, corresponding to the ‘additive empty bunch’ contains a no lines, and

M∅a
is the same two-element monoid {e, 1}.

• RS∅m
, corresponding to the ‘multiplicative empty bunch’ contains no lines

and M∅m
is the one-element monoid {e}.

• RSΓ;∆ has all the lines of RSΓ followed by all the lines of RS∆. MΓ;∆ is
formed as the set (MΓ ∪ M∆)/{eΓ = e∆, 1Γ = 1∆}. Any sum r + s with
r ∈ MΓ and s ∈ M∆ is undefined, unless one or the other is e.

• RSΓ,∆ has all the lines of RSΓ ‘alongside’ the lines of RS∆. Where there are
enough lines, this means taking the (automatically disjoint) union of the
sets of triples in each line. Where one structure has fewer lines (w.l.o.g.,
RSΓ), it can be padded with lines of the form {〈1Γ, nothing , nothing〉}. MΓ,∆

contains the elements (MΓ∪M∆)/{eΓ = e∆} and also, for every r 6= eΓ ∈ MΓ

and s 6= e∆ ∈ M∆, a new, distinct, element r+s. 1Γ,∆ is the element 1Γ+1∆.

Definition 3.5 A proper ribbon structure is a member of the smallest class
that contains all ribbon structures which correspond to bunches, and is closed
under a certain set of ribbon structure transformations.

The tranformations are closely related to the ribbon proof rules. There are

10

Bean

in all seventeen transformations, which we will call ∧-intro, ∧-elim, ∨-intro,
→-elim, ⊥-elim, ∗-intro, −∗-elim, ∗-elim, I-intro, I-elim, Box →-intro, Use →-intro,
Box −∗-intro, Use −∗-intro, Box∨-elim, Use∨-elim and repeat.

The first five such transformations, and the repeat rule, involve adding
a single line to a structure. This line must be based on an existing line in
the structure; that means it must have exactly the same set of ribbons in
its triples. The line will have only one non-nothing formula in it, called the
conclusion, in ribbon r say. There will be either one or two premise lines,
which will also contain formulae (called premises) in ribbon r. The premise
lines, and the line the conclusion is based on, must both be either in the same
box as the conclusion or in some enclosing box. The triples in these lines are
related as shown in the following table:

Rule Conclusion Premises

∧-intro 〈r, P ∧ Q,∧-intro〉 〈r, P, j〉 and 〈r, Q, j′〉

∧-elim 〈r, P,∧-elim〉 〈r, P ∧ Q, j〉 or 〈r, Q ∧ P, j〉

∨-intro 〈r, P ∨ Q,∨-intro〉 〈r, P, j〉 or 〈r, Q, j′〉

→-elim 〈r, Q,→-intro〉 〈r, P → Q, j〉 and 〈r, P, j′〉

repeat 〈r, P, repeat〉 〈r, P, j〉

The transformations relating to the rules ∗-elim, ∗-intro and −∗-elim are
slightly more involved. ∗-intro produces a new line with one fewer ribbons
than the line it is based on, containing a ribbon r + s for some pair r, s of
ribbons in the line it is based on. It has two premise lines (they may be the
same line), one which contains a formula P in the ribbon r and the other
contains a formula Q in the ribbon s; its conclusion is the formula P ∗ Q in
the newly created ribbon r + s.

−∗-elim has exactly the same structure as ∗-intro, except that it expects a
formula P in r and P −∗ Q in s and produces Q in the new ribbon r + s.

The ∗-elim actually modifies the monoid of the ribbon structure. It oper-
ates on a premise of the form P ∗Q in a ribbon r, say. The monoid is modified
by adjoining two fresh elements s and t such that s + t = r.

There is a natural ‘simplest’ way to adjoin these elements to the monoid.
The details are as follows: For every u in the monoid, s + u and t + u are
both defined iff r + u is defined. If they are defined, they are (distinct) fresh
elements. Considering these elements, (s+u)+ v (resp. (t+u)+ v) is defined
to satisfy associativity; defined only if u + v is defined. v itself is either an
element of the original monoid (in which case u + v was already defined, and
we have already constructed the element s+(u+v)), or v is of the form s+w,
so s + u + v = s + u + s + w ↑ (as s + s ↑), or v is of the form t + w so
s + u + v = s + u + t + w = r + u + w in the original monoid.

Having modified the monoid, the new line can be inserted into the proof.

11

Bean

It will differ from the line it is based on by having the ribbon r replaced by
the two new ribbons s and t. It will contain the two triples 〈s, P, ∗-elim〉 and
〈t, Q, ∗-elim〉.

I-elim has the structure of −∗-elim and ∗-intro, but takes premises of the
form P and I, and produces a conclusion of the form P .

I-intro has the structure of ∗-elim, and creates two new ribbons in exactly
the same way, it differs in that from a premise of the form P it produces
conclusions P and I. I-intro can also take a slightly different form, where
instead of one ribbon being split into two, a new ribbon with formula I in it
is created. This form is necessary for proving certain very simple theorems
such as ∅m ⊢ I. In this case, the monoid is altered by adjoining a new element
— but this is a special case of the previous alteration, with e being split into
e + r for some new r.

The remaining rules are the rules which use boxes, →-intro, −∗-intro and
∨-elim. In each case, the rule gives rise to two transformations: once which
introduces a box, and one which uses it.

Using Box →-intro we can introduce a new box into a ribbon structure.
This box goes into an existing box, and inherits the monoid of that box. The
box contains a single line, containing a single non-nothing formula, being an
assumption formula P in a ribbon r, say. The box should be based on some
previous line, so the set of ribbons used in it should be the same as some
previous line in the enclosing box. The box is said to be focussed on ribbon r
with assumption P .

Using Use →-intro, we use an existing box created by Box →-intro to add
a line to the structure. The new line, which is to be placed immediately after
the box, should be based on the last line of the box, which should contain a
formula Q in the ribbon r that the box is focussed on. The new line contains
its only non-nothing formula in that same ribbon r, and the formula is P → Q
where P is the assumption of the box. Once this has been done, the box is
said to have been used, and boxes may only be used once.

Similary, Box −∗-intro adds a new box to a ribbon structure. However, in
this case the monoid is different. It is the monoid of the enclosing box, with a
new element r freely adjoined — by which we mean that s+r is defined for all
s in the original monoid, and the new greatest element 1 is formed by adding
r to the original greatest element; 1 = 1old + r. The only line in the box is
based on some previous line, and contains all the ribbons in that line (with
nothing in them) plus additionally the new ribbon r, with an assumption P
in it.

Now Use −∗-intro uses a Box −∗-intro box. A new line is created after the
last line of the box, based on it. The last line of the box must contain a
formula Q in some ribbon of the form s + r, where r was the new ribbon
added in the box. The new line has the same ribbons except s + r is replaced
by s, and the formula is P −∗ Q where P was the assumption. Again, a box
may only be used once.

12

Bean

The ∨-elim rule is very similar to →-intro, except with two boxes. Box∨-elim
has a premise of the form A∨B in some ribbon r, and it creates two single-line
boxes, both of which must be based on the same line containing r, one with
assumption A and one with assumption B. Use∨-elim can be used when both
boxes have arrived at the same conclusion C in some ribbon s in their last
lines, which must both have the same set of ribbons in. The line added is
placed after the boxes, and is identical to the two conclusion lines. Again, the
boxes are said to be used when this has happened, and can only be used once.

These proper ribbon structures then formalise the notion of a ribbon proof
under construction. Note that by the nature of the inductive definition, every
such structure is based on some bunch Γ. A complete ribbon proof is simply
such a structure which is ‘finished’:

Definition 3.6 A ribbon proof is a proper ribbon structure in which every
box except the outermost has been used by the appropriate rule, and whose
last line contains only a single ribbon, containing a formula P . It is said to
be a proof of Γ ⊢ P , where Γ is the bunch that the structure is based on.

3.3 Substitution and Normalization

One of the properties we expect from a formal proof system is some kind of
substitution property; if we can prove something using a hypothesis P , and
we have another proof of P from hypothesis Q, we expect to able to combine
these two proofs to form a proof of the original conclusion using Q instead of
P as hypothesis.

We use a notation Γ(P) to denote a bunch which contains zero or more
occurences of a formula P , and then Γ(∆) to denote a similar bunch with
those occurences replaced by a bunch ∆.

Theorem 3.7 (Substitution) Given a ribbon proof RP1 of Γ(P) ⊢ Q, and
a ribbon proof RP2 of ∆ ⊢ P , we can produce a ribbon proof RP3 of Γ(∆) ⊢ Q

Proof. (Sketch) Firstly we combine the monoids M1 and M2 of the two proofs.
For each hypothesis P in RP1, which occurs in a ribbon r, say, we incorporate
a copy of the entire monoid M2. We do this as follows:

M3 is defined to be M1, with, for every hypothesis P in a ribbon r, a
‘copy’ of M2. We make each such copy by adding to M3 an element sr for
every element 1 6= s 6= e ∈ M2. Within each such copy of M2, the same
monoid structure as M2 is preserved. We equate 1M2

with r. Then we define
addition t + sr to be defined iff t + r is defined, and to be a fresh element.
Other additive cases follow as they must to preserve associativity. (Note that
this is a generalisation of the procedure used in the ∗-elim construction to add
elements to the monoid.)

Now we actually insert copies of the proof RP2 at each hypothesis P . We
delete each P , and below the line it occurred in, we insert a copy of RP2 line

13

Bean

by line: Each line is based on the line of RP1 that P occurred in, with the r-
triple replaced by the set of all the triples in this line of RP2, with the ribbons
translated into those from this particular copy of M2 within M3.

It remains to show that this is indeed a ribbon proof, by showing that
it can be constructed starting with the structure corresponding to Γ(∆) and
applying the rules of RP1 and a number of copies of the rules for RP2, a
straightforward but rather longwinded verification we omit here. 2

We mentioned briefly in the introduction that the notion of normalization
for box proofs is somewhat messy; unfortunately, this problem is inevitably
inherited by ribbon proofs. We will not deal with the details of that process
here, but we observe that the difficulties in that process revolve mainly around
the structural rules and hence the the intuitionistic box proof system; the mul-
tiplicative ∗ and −∗ and their associated ribbon rules have simple equational
properties.

3.4 Soundness and Completeness

We show that ribbon proofs are a sound and complete system by proving their
equivalence to LBI, which is known to be sound and complete. We will outline
in some detail the proofs of relative soundness, that every theorem provable
with ribbon proofs is LBI provable, and relative completeness, that every the-
orem provable in LBI has a ribbon proof. Since both proofs proceed by cases
for each ribbon proof rule, we give only the base cases and a representative
selection of the rule cases.

We need some auxiliary concepts.

Definition 3.8 A ribbon bunch is a bunch based on ribbons (elements of the
ribbon monoid of a box of a proof) instead of propositions. Given a particular
ribbon monoid M , let the set of ribbon bunches over M be denoted RB(M).
We define a partial interpretation function [−] : RB(M) ⇀ M into ribbons as
follows:

• [r] = r for a ribbon r,

• [R;S] = [R] = [S] if they are indeed equal, undefined if they are not equal,

• [R,S] = [R]+[S] if that addition is defined in the monoid, undefined if not.

Definition 3.9 The visible hypotheses from a particular ribbon r at a partic-
ular line of a proof are

• hypotheses,

• assumptions,

• conclusions of ∗-elim and I-intro rules,

which satisfy the following:

• They occur in previous lines of this box, or previous lines of boxes enclosing
this box;

14

Bean

• They occur in ribbons ≤ r;

• In the case of ∗-elim conclusions or the 2-conclusion form of I-intro, occuring
in the current box, only one of the pair is visible;

• In the case of the 1-conclusion form of I-intro, it must actually be in r itself.

What we are trying to do is, for each formula P in the proof, work out
which hypotheses it could have been proved from. The delicate part is the
inclusion of the ∗-elim conclusions: these formulae are neither assumptions
nor hypotheses in the normal sense, but nonetheless they are the only way of
formulating a local hypothesis notion like this.

Lemma 3.10 For every formula P in a ribbon r in a ribbon proof, there is a
(unique up to ≡) ribbon bunch R such that

• [R] = r,

• R contains all ribbons which contain hypotheses visible from P ,

• R contains only such ribbons,

• R contains each ribbon at most once.

We omit the proof of this lemma, which is a lengthy induction over the
construction of ribbon structures.

Definition 3.11 The corresponding sequent to a formula P in ribbon r of a
ribbon proof is a sequent Γ ⊢ P , where Γ is a bunch (of BI formulae) con-
structed from the ribbon bunch R of Lemma 3.10 by replacing each ribbon s
with a bunch Γs. Γs is an additive bunch (i.e. semicolon-separated) containing
each hypothesis in s visible from P in r.

The notion of corresponding sequent, althought slightly delicately defined,
is just a formalisation of the question ‘What have we proved at this point?’.

Proposition 3.12 In a ribbon proof of Γ ⊢ P the corresponding sequent to
the conclusion P as it occurs in the final line of the proof is Γ ⊢ P .

Proof. Note that only hypotheses from the inital bunch can still be visible
at P (all boxes must have closed, and both conclusions of any ∗-elim will be
visible). 2

We will prove relative soundness by showing, for every proof rule, that the
corresponding sequent at the conclusion can be deduced from the correspond-
ing sequents at the premises of the rule, and the structure of the proof. To do
this, we need certain lemmas about these sequents:

Lemma 3.13 The following hold of corresponding sequents in a ribbon proof:

(i) If P , Q and R all occur in that order in the same ribbon r in a proof,
with Q in the same box as R or an enclosing one and P in the same box
as Q or an enclosing one, then the corresponding sequents will have the
form Γ ⊢ P , Γ; ∆ ⊢ Q and Γ; ∆; Ξ ⊢ R.

15

Bean

(ii) If Γ ⊢ P is the corresponding sequent to a formula P in a ribbon r, and
Γ in fact includes some ∗-elim or I-intro conclusion formula Q, then Γ
will be of the form Γ′, Q.

(iii) If P is a formula in ribbon r, Q in s and R in r + s, and there are no
∗-elim or I-intro conclusions visible from P and in the current box which
match ∗-elim or I-intro conclusions visible from Q and in the current
box, then the corresponding sequents will have the form Γ ⊢ P , ∆ ⊢ Q
and ((Γ; Γ′), (∆, ∆′)); Ξ ⊢ R.

(iv) Alternatively, if ∗-elim or I-intro conclusions S0, S1, . . . visible from P
match T0, T1, . . . visible from Q, then the corresponding sequents are of the
form Γ, S0, S1, . . . ⊢ P , ∆, T0, T1, . . . ⊢ Q and (Γ, ∆, Σ0, Σ1, . . .); Ξ ⊢ R,
where Σn ⊢ Sn ∗ Tn is the corresponding sequent at the formula Sn ∗ Tn

from which S0 and T0 were deduced by ∗-elim, or, alternatively, Σn ⊢ Sn

corresponded to Sn from which Sn and I were deduced by I-intro.

Now we are in a position to move on to our main results.

Theorem 3.14 (Relative Soundness) If there is a ribbon proof of a se-
quent Γ ⊢ P , then it is a theorem of LBI.

Proof. [Sketch] We prove the stronger statement that in a ribbon proof, every
corresponding sequent is a theorem of LBI.

We fix a particular ribbon proof Γ ⊢ P , and we work through the proof
line by line, proving for each line that every corresponding sequent is an LBI-
theorem. By induction, we assume that all corresponding sequents in previous
lines are LBI-theorems.

The base step concerns hypotheses. The corresponding sequent to a hy-
pothesis is a (generalised) axiom sequent Γ; P ⊢ P .

There is an inductive step for each of the ribbon proof rules. We will prove
here a representative selection. For each case, we show in Fig. 6 a general
ribbon proof using the rule, annotated with the corresponding sequents at the
important points, and show the LBI proof that the sequent corresponding to
the conclusion follows from the other sequents.

• ∧-intro: By the first part of Lemma 3.13, the corresponding sequents in-
volved will be Γ0 ⊢ P , Γ0; Γ1 ⊢ Q, and Γ0; Γ1; Γ2 ⊢ P ∧Q. The last sequent
can be deduced as shown from the first two in LBI, using the ∧R rule and
the structurals.

• −∗-elim: There are two cases for this rule, corresponding to parts (iii) and
(iv) of Lemma 3.13.

In the first case, where no pair of ∗-elim formulae is ‘reunited’ by this
rules use, the sequents at P and P −∗ Q will be Γ0 ⊢ P and Γ1 ⊢ P −∗ Q,
and the sequent at Q will be ((Γ0; Γ2), (Γ1; Γ3)); Γ4 ⊢ Q. This follows from
the first two using −∗ L and structural rules.

In the second case, some ∗-elim formulae are brought back together, and
we know more details about the structure of the corresponding sequents.

16

Bean

Now the corresponding sequents will have the forms Γ0, S0, S1, . . . ⊢ P and
Γ1, T0, T1, . . . ⊢ P −∗ Q, but the proof must earlier include all the formulae
Sn ∗ Tn, with corresponding sequents Σn ⊢ Sn ∗ Tn, say. The corresponding
sequent to Q will be Γ0, Γ1, Σ0, Σ1, . . . ⊢ Q, which we can deduce using ∗L,
Cut, and −∗ L.

The similar case with I-intro involves use of IR and Cut.
We illustrate both a case with no ∗-elim formulae reunited, and a case

with two pairs.

• ∗-intro is handled exactly like −∗-elim, although it is slightly simpler as the
∗R rule corresponds more closely to ∗-intro than −∗ L does to −∗-elim. It
has the same cases, depending if any unpaired ∗-elim or I-intro formulae
are involved. We illustrate only the simpler case here.

• ∗-elim is a special case. As actually used in a proof on a formula P ∗ Q,
it creates two fresh ribbons s and t and two formulae P and Q whose
corresponding sequents will be the axiom sequents P ⊢ P and Q ⊢ Q, so
no proof is needed. The actual ‘use’ of ∗-elim comes when the P and Q are
‘reunited’ and is covered under the rules above. The real work is all in the
definition of corresponding sequent.

2

Theorem 3.15 (Relative Completeness) For every theorem Γ ⊢ P of LBI,
there is a ribbon proof with a single ribbon containing the formula P as its last
line, such that the sequent at P is Γ ⊢ P .

Proof. [Sketch] We prove this by induction over the rules used in the LBI
proof of Γ ⊢ P , showing that there is a ribbon proof of every sequent occuring
in the proof.

The base case is again the axiom sequent P ⊢ P . The ribbon proof is that
is the two lines, containing the formula P once as a hypothesis, and once as
the conclusion of the repeat rule.

There is an induction step for each of the LBI rules. Again, we prove here
only a few cases. Every case is a straightforward transformation on proofs.
Each case discussed is illustrated in Fig. 7.

• ∧L : By induction, we have a ribbon proof Γ; A; B ⊢ P . We transform it
by adding a hypothesis A ∧ B above the hypotheses A and B. Then we
change A and B from being hypotheses to being derived from A∧B by use
of ∧-elim, and leave the rest of the proof the same.

• ∗R : By induction we have ribbon proofs of Γ0 ⊢ P and Γ1 ⊢ Q, and we
place them side-by-side and add a final ∗-intro step. The formal definition of
placing side-by-side is analagous to the notion used to construct the ribbon
structure corresponding to a bunch (∆, Γ).

• ∗L : We have by induction a ribbon proof of Γ, A, B ⊢ P . We write this
proof such that A and B occur as horizontally adjacent hypotheses (may

17

Bean

1. P Γ0 ⊢ P

...

n. Q Γ0; Γ1 ⊢ Q

...

m. P ∧ Q Γ0; Γ1; Γ2 ⊢ P ∧ Q

Γ0 ⊢ P Γ0; Γ1 ⊢ Q
∧R

Γ0; Γ0; Γ1 ⊢ P ∧ Q
C

Γ0; Γ1 ⊢ P ∧ Q
W

Γ0; Γ1; Γ2 ⊢ P ∧ Q

∧-intro

1. P P −∗ Q Γ0 ⊢ P Γ1 ⊢ P −∗ Q

...
...

n.

n + 1. Q ((Γ0; Γ2), (Γ1; Γ3)); Γ4 ⊢ Q

Γ0 ⊢ P
W

Γ0; Γ2 ⊢ P Q ⊢ Q
−∗ L

(Γ0; Γ2), P −∗ Q ⊢ Q

Γ1 ⊢ P −∗ Q
W

Γ1; Γ3 ⊢ P −∗ Q
Cut

((Γ0; Γ2), (Γ1; Γ3)) ⊢ Q
W

((Γ0; Γ2), (Γ1; Γ3)); Γ4 ⊢ Q

−∗-elim - simplest case

1. . . . S0 ∗ T0 S1 ∗ T1 . . . Σ0 ⊢ S0 ∗ T0 Σ1 ⊢ S1 ∗ T1

2. S0 T0 S0 ⊢ S0 T0 ⊢ T0

3. S1 T1 S1 ⊢ S1 T1 ⊢ T1

4.

5. P P −∗ Q Γ0, S0, S1 ⊢ P Γ1, T0, T1 ⊢ P −∗ Q

6. Q Γ0,Σ0,Σ1,Γ1 ⊢ Q
Γ0, S0, S1 ⊢ P Q ⊢ Q

Γ0, S0, S1, P −∗ Q ⊢ Q Γ1, T0, T1 ⊢ P −∗ Q
Cut (and ≡)

Γ0, S0, T0, S1, T1, Γ1 ⊢ Q
∗L

Γ0, S0, T0, S1 ∗ T1, Γ1 ⊢ Q
∗L

Γ0, S0 ∗ T0, S1 ∗ T1, Γ1 ⊢ Q Σ0 ⊢ S0 ∗ T0
Cut

Γ0, Σ0, S1 ∗ T1, Γ1 ⊢ Q Σ1 ⊢ S1 ∗ T1
Cut

Γ0, Σ0, Σ1, Γ1 ⊢ Q

−∗-elim - with 2 pairs of ∗-elim formulae involved

1. P Q Γ0 ⊢ P Γ1 ⊢ Q

...
...

n.

n + 1. P ∗ Q ((Γ0; Γ2), (Γ1; Γ3)); Γ4 ⊢ P ∗ Q

Γ0 ⊢ P
W

Γ0; Γ2 ⊢ P

Γ1 ⊢ Q
W

Γ1; Γ3 ⊢ Q
∗R

((Γ0; Γ2), (Γ1; Γ3)) ⊢ P ∗ Q
W

((Γ0; Γ2), (Γ1; Γ3)); Γ4 ⊢ P ∗ Q

∗-intro

Fig. 6. Some cases of relative soundness

18

Bean

Γ; A; B ⊢ P
∧L

Γ; A ∧ B ⊢ P

1. Γ hypothesis

2. A hypothesis

3. B hypothesis

...

n. P

1. Γ hypothesis

2. A ∧ B hypothesis

3. A ∧-elim

4. B ∧-elim

...

n. P

Γ0 ⊢ P Γ1 ⊢ Q
∗R

Γ0, Γ1 ⊢ P ∗ Q

1. Γ0 Γ1

...
...

n. P Q

n + 1. P ∗ Q ∗-intro

Γ, A, B ⊢ P
∗L

Γ, A ∗ B ⊢ P

1. Γ A B hypotheses

...
...

...

n.

n + 1. P

1. Γ A ∗ B hypotheses

2. A B ∗-elim
...

...
...

n.

n + 1. P

Γ, P ⊢ Q
−∗ R

Γ ⊢ P −∗ Q

1. Γ P hypotheses

...
...

n.

n + 1. Q

1. Γ hypotheses

2. P assumption

...
...

n.

n + 1. Q

n + 2. P −∗ Q −∗-intro

Fig. 7. Some cases of relative completeness

require use of twist), and we transform it by placing immediately above A
and B the new hypothesis A ∗ B. We then alter A and B to no longer be
hypotheses, but instead derived from A ∗B by ∗-elim, and leave the rest of
the proof intact.

• −∗ R : By induction we have a ribbon proof of Γ, P ⊢ Q. We construct a
proof of Γ ⊢ P −∗ Q using −∗-intro as the final step, and inserting the given
proof inside the box produced by the −∗-intro rule.

2

19

Bean

3.5 A Spatial ‘Term Model’

Ribbon proofs give rise to a model of sorts. Consider a ribbon proof within the
∧, ∗, −∗ fragment of BI. Now we close the proof in the appropriate sense: we
apply the rules ∧-elim, ∗-elim and −∗-elim to each applicable formula (twice
to each in the case of ∧-elim) until this is no longer possible. We also need a
reduction from formulae of the form T −∗ P to P where T is a multiplicative
theorem (i.e. ∅m ⊢ M).

The resulting proof remains a proof of the original theorem, albeit with
various apparently unnecessary rule uses. However, it can also yield a model
of the theorem: by a model of a theorem Γ ⊢ P , we mean a witnessing model
m such that m |= Γ and m |= P .

There are two ways of extracting this model. Most abstractly, we extract
the model as the ribbon monoid of the proof. We set the forcing relation for
atoms to be r |= A iff A occurs as a bare atom in ribbon r in the proof. It
is then easy to prove by induction that the forcing rules for ∗, ∧ and −∗ will
ensure that m |= Γ and m |= P .

More concretely, we can produce a geometrical model based on the actual
representation of the proof on paper, by ‘squashing’ the proof vertically and
taking the model to be, for each ribbon r, a closed interval of the real line.
Then define · to be union of ‘almost-disjoint’ sets: that is, the intersection
may be at most a finite set of points. To make the model work, we need to be
careful that no r 6= s map to exactly the same set; we also need to understand
that although for clarity we allow a small horizontal gap between adjacent
ribbons, in a geometrical semantics they should overlap in a line.

The geometrical model is, of course, the same monoid as the first, so the
same model in an algebraic sense; it provides a concrete representation of it.

This strategy is too naive to account for I, ⊥, → and ∨. Similar models
should be possible for these cases.

• I: To account for I, we would have to take a quotient of the monoid so that
wherever r |= I we simply set r = e.

• ⊥: The partial monoid semantics uses undefined sums to internalise ⊥.
Accordingly, to modify the the above model to account for ⊥, we would
have to alter the monoid so that if in some ribbon r, ⊥ is provable, r should
be ‘undefined’. So we set r ↑, i.e. for all s+ t = r, we set s+ t ↑, and further
for all u, r + u ↑ in the same sense.

• →: The semantics for → involves constructing the accessibility relation ⊑.
This will inevitably make the model much more complex. As well as adding
the →-elim rule to the set of reductions, we have to add many additional
worlds to the model. A possible strategy is, for each ribbon r, and each
atomic proposition A not already in r, we add a new ribbon rA ⊑ r, and in
rA we add the formula A, and repeat the reduction process. (If we are also in
the setting where we account for ⊥, we only add rA if it is not inconsistent.)

20

Bean

For every other ribbon s such that r + s was defined, we now have to define
a new ribbon rA + s = srA

⊑ r + s, say, and continue with the reduction
process. This will yield a very large model indeed. Adding → also requires
reductions for formulae T → P where T is an additive theorem.

• ∨: To add ∨ to our model, we would need to pass in some way from ribbon
monoids to sets of ribbon monoids, parallel to the treatment of ∨ in the
notion of prime bunches in [4]. (In fact, all this term model work is closely
related to that notion)

4 Discussion

This research was originally motivated by practical concerns; the proofs which
were arising during the ongoing research of O’Hearn et al. To actually develop
this proof system into a proof system for Pointer Logic itself would involve
two principal enhancements. Firstly, to investigate a minimal set of axioms
for the domain-specific concerns of that logic, and secondly to deal with the
limited quantification in that logic. This fulls far short of the full complex
system of quantifiers in Predicate BI.

Work is currently ongoing into an implementation of the system in ML.
Currently this takes the form of an abstraction of the notion of ribbon proof,
with some functions representing various proof-transformations. It would be
nice to enhance it in the direction of being a visual proof calculator in the
style of Jape[1].

Another interesting direction is to consider the graphical nature of the
proofs. Having presented what is a visibily graphical system, we have then
given it formal meaning in a very algebraic way. We are also investigating
whether the proofs can be given a genuinely geometrical semantics mirroring
their informal presentation on paper, and whether this can be related to the
spatial nature of BI’s model theory.

References

[1] R Bornat and BA Sufrin. Animating formal proof at the surface: the Jape proof
calculator. The Computer Journal, 43(3):177–192, 1999.

[2] Didier Galmiche, Daniel Mery, and David Pym. Resource tableux (extended
abstract). In Proceedings of CSL’02, LNCS. Springer-Verlag, to appear 2002.

[3] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about
programs that alter data structures. In Proceedings of CSL’01, LNCS, pages
1–19. Springer-Verlag, 2001.

[4] DJ Pym. The Semantics and Proof Theory of the Logic of Bunched Implications.
Applied Logic Series. Kluwer Academic Publishers Boston/Dordrecht/London,
2002.

21

	Introduction
	The Logic of Bunched Implications
	Semantics
	Proof Theory

	Ribbon Proofs
	Introduction
	Formal Definitons
	Substitution and Normalization
	Soundness and Completeness
	A Spatial `Term Model'

	Discussion
	References

